
Kobus van Schoor
DataProphet - https://dataprophet.com/

v.schoor.kobus@gmail.com
https://www.linkedin.com/in/kobus-van-schoor

Please help, I’ve lost my keys
Recoverable, tamper-resistant full-disk encryption at the distributed Edge

https://dataprophet.com/
mailto:v.schoor.kobus@gmail.com

Who are we?

DataProphet is an advisory and technology company that
helps manufacturers extract productivity gains from their
factory data.

A core part of our IIoT platform offering is the Edge fleet, a
globally distributed fleet of gateway devices ingesting
factory data to the cloud.

Quick overview of our Edge devices

An Edge device is a small industrial-grade Linux box that sits
in factory environments.

They run on Ubuntu and we support running a variety of both
containerized and direct workloads on these devices.

Some devices can run custom customer-specific workflows,
most now run our standardised software (the Edge stack).

TLDL; this is a diverse set of devices that require a
flexible and supporting environment.

Aim of this talk

I want to present a framework, backed by open-source tooling that you can adapt

to your own environment.

The aim of this framework is to help you roll out FDE in a maintainable,

scaleable and recoverable manner

Four components we need to consider

Verifying the boot chain

We need to verify the boot chain to ensure we’re
booting in a trusted system state.

We verify the boot chain by hashing system
components and config files and comparing
them to a known state*

The TPM stores the disk unlock key and is
responsible for comparing the actual system
state with the expected state. If they match, it
unseals the disk encryption key.

*authorized policies work a bit different, but it’s the same idea

Who does all the hashing?

Each component is responsible for
hashing (measuring) the next
component in the boot chain.

The hashes are stored in the TPM
event log.

Quick overview of how the TPM event log works

The hashes are recorded in the TPM event
log in different slots, called PCRs. Each PCR
stores the hash of a different set of system
components (UAPI reference).

The current state of each PCR is dependent
on its entire event log history

https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/

Measured boot: implementation notes

For grub, you need to enable the tpm module to enable measurements (check the
docs for GRUB_PRELOAD_MODULES). Note that this doesn’t work with secure boot -
booting with secure boot disables all sideloading of modules, including the tpm module.

Important note: you also need to measure the LUKS master key or taint the TPM to
prevent LUKS spoofing attacks - more info here.

https://oddlama.org/blog/bypassing-disk-encryption-with-tpm2-unlock/

How do we determine what system state to trust?

By predicting the PCR values of the next boot.

Most of the time, the next boot will match the current PCR values. However they
will change when you need to do kernel and firmware upgrades.

We can predict the PCR values of the next boot by merging the current TPM event
log with some predicted values (e.g. by rehashing the new on-disk kernel).

We can then reseal the disk unlock key against the new set of predicted PCR
values*.

* when using authorized policies, you’d sign the new set of PCRs instead of resealing the key

How can I predict the PCR values?

This is highly dependent on your
environment.

● openSUSE/pcr-oracle: seems to be
aimed at Suse-based environments

● systemd-measure: aimed at
systemd-boot setups

We built DataProphet/pcr-predict - a simple
Python script that works for Ubuntu + Grub
setups.

$./pcr-predict.py

INFO:root:using kernel image
/boot/vmlinuz-5.15.0-25-generic
INFO:root:using initramfs image
/boot/initrd.img-5.15.0-25-generic
INFO:root:TPM event log has 92 entries
INFO:root:calculating digests against
which key will be sealed
INFO:root:PCR0 : c540cb8d372b0...
INFO:root:PCR4 : 7c1be4d3500ea...
INFO:root:PCR8 : 967757a1f96de...
INFO:root:PCR9 : 14684a7fa97fe...
INFO:root:PCR15 : 0000000000000...
{
 "0": "c540cb87f...",
 "4": "7c1be4d35...",
 "8": "967757a1f...",
 "9": "14684a7fa...",
 "15": "000000000..."
}

https://github.com/openSUSE/pcr-oracle/
https://www.freedesktop.org/software/systemd/man/latest/systemd-measure.html
https://github.com/DataProphet/pcr-predict

Unlocking the disk is made simple with latchset/clevis.

Clevis abstracts key retrieval from various sources (e.g. TPM, key servers)

It then also integrates with various tools, like LUKS & dracut, to use these keys
to do useful things (like unlocking your disk).

We use clevis to retrieve keys from both the TPM and our key recovery service.

Unlocking the disk using the TPM

https://github.com/latchset/clevis

Help, I lost my keys. What now?

Eventually, something will go wrong and
the TPM won’t unseal your disk key. If
you’re really unlucky, this happens to your
whole fleet.

Enter latchset/tang - a simple, stateless,
key recovery service.

https://github.com/latchset/tang

Reasons why Tang is great ❤
● Keys can be encrypted without access to the server

The Tang server doesn’t need to be reachable to set up the recovery key (you
just need its advertisement, which can be distributed out-of-band).

● Incredibly simple to set up, secure and maintain.
Stateless & zero-config. Secret-sharing crypto means compromising just the
server doesn’t compromise client keys.

● Comms protocol consists of simple GETs and POSTs - TLS optional
The entire service only has two simple endpoints.

Recovery: what does it look like?

If your disk isn’t unlocking, it means your device will get stuck pre-boot, i.e. in
your initramfs environment - a slimmed down environment with the basic tools
needed to mount your disk and boot to it.

We use dracut - a modern initramfs used by Red Hat/Fedora, SUSE and a bunch
of other distros (and perhaps future Ubuntu versions?).

Customising your dracut images is easy - you just need a dracut module (a
simple bash script).

https://github.com/dracutdevs/dracut
https://discourse.ubuntu.com/t/please-try-out-dracut/48975

Recovery mode: staying in control

We need to retain control of a device even if it’s in recovery mode. We need:

1. Working networking
This needs to work well before anything else will work

2. Working remote access
Depending on your setup, this may require a VPN

3. A way to control the device
SSH or some other orchestration method (e.g. Saltstack)

Dracut modules: basic overview

The initramfs consists of a small bootable filesystem.

Extending the initramfs usually consists of:

● Adding binaries and library files
Achieved with dracut helpers like inst_binary

● Adding config files
They’re simply copied over

● Setting up a systemd service
Very similar to normal services, just with different WantedBy targets

Networking in the initramfs

We use NetworkManager (along with its dracut module) + netplan to handle
networking in the initramfs.

The host config is copied over into the initramfs by netplan generate’ing the
configs into the initramfs root

install the netplan configs
inst_multiple -o -H /etc/netplan/*.yaml
render the network configs
netplan generate --root-dir "${initdir}"

enable the neednet option, which enables networking in the initramfs
echo "rd.neednet=1" > "${initdir}/etc/cmdline.d/10-neednet.conf"

Implementation notes: networking

Using systemd-networkd + rd.neednet made networking a hard requirement
for booting which is why we ended up using NetworkManager

The network-manager dracut module had a bug (dracut#2123) which might
break NetworkManager inside the initramfs on older versions of Debian/Ubuntu -
it requires a manual workaround (we just fixed it with symlinks)

https://github.com/dracutdevs/dracut/pull/2123

Retaining remote access
We use wireguard + ssh to retain remote access to our devices.

install the wireguard binaries
inst_binary wg
inst_binary wg-quick
inst_binary sort # needed by wg-quick

install the config
NOTE the config file also includes the keys
inst_simple "${CONFIG}"

install the wg-quick service template
inst_simple
/lib/systemd/system/wg-quick@.service

enable the wg-quick service for the dp config
override_and_enable "wg-quick@${INTERFACE}"

add the sshd binary
inst_binary /usr/sbin/sshd

add the current host keys
inst_multiple /etc/ssh/ssh_host_*

install the system ssh service
inst_simple
/lib/systemd/system/ssh.service

enable the ssh service
override_and_enable ssh

copy in authorized keys
inst_simple /root/.ssh/authorized_keys

Monitoring and alerting

node-exporter + textfile-based metrics makes alerting easy

install the node exporter binary and service

inst_binary prometheus-node-exporter

inst_simple "/lib/systemd/system/prometheus-node-exporter.service"

add the static metrics file to indicate that the device is in recovery

mode

cat > "${initdir}${METRICS_DIR}/recovery.prom" <<EOF

edge_fde_recovery{device="{{ device_id }}"} 1.0

EOF

Bringing it all together

Thank you
If you see my keys, please let me know

