Q@ oo
&/

EUROPE

Please help, I've lost my keys

Recoverable, tamper-resistant full-disk encryption at the distributed Edge

Kobus van Schoor |
DataProphet - https://dataprophet.com/ d A t ADf(=

o ViE 1
v.schoor.kobus@gmail.com ‘ ® CONNECT

https://www.linkedin.com/in/kobus-van-schoor

https://dataprophet.com/
mailto:v.schoor.kobus@gmail.com

Who are we?

DataProphet is an advisory and technology company that _I
helps manufacturers extract productivity gains from their dataprophet
factory data. E D

A core part of our lloT platform offering is the Edge fleet, a

globally distributed fleet of gateway devices ingesting |_ EDGE
factory data to the cloud.

Quick overview of our Edge devices
An Edge device is a small industrial-grade Linux box that sits
in factory environments.

They run on Ubuntu and we support running a variety of both
containerized and direct workloads on these devices.

Some devices can run custom customer-specific workflows,
most now run our standardised software (the Edge stack).

TLDL,; this is a diverse set of devices that require a
flexible and supporting environment.

Aim of this talk

| want to present a framework, backed by open-source tooling that you can adapt

to your own environment.

The aim of this framework is to help you roll out FDE in a maintainable,

scaleable and recoverable manner

4)

TPM-based
unlocking
mechanism to
allow Fully
autonomous
reboots

_ J

Four components we need to consider

(

Onboarohng
and
recovery
mechanisms

_J

Monitoring
and
alel'tb\g
mechanisms
to make it
scale

~

Verifying the boot chain

We need to verify the boot chain to ensure we'’re
booting in a trusted system state.

We verify the boot chain by hashing system
components and config files and comparing
them to a known state*

The TPM stores the disk unlock key and is
responsible for comparing the actual system
state with the expected state. If they match, it
unseals the disk encryption key.

*authorized policies work a bit different, but it's the same idea

)
¢540cb8d37. ..
EFI Firmware| ——=
—
[Kernel,)
Initramfs & 7clbe4d350. . .
\ Grub

Grub
Commo\v\o{s & 967757alf. ..
Cmouine

TPM
compar’es
actual vs.
expected

state

Disk
Passworo(

/ uv\locke.o(

Yes

e

Matches?

N

No

™\

Disk remains
locked

Who does all the hashing? [fae]
[.]

v
Each component is responsible for [EFI ;;Wa PCRD
hashing (measuring) the next
component in the boot chain. v

shim + grub

The hashes are stored in the TPM executi'es] perd

event log.
PCR9 PCR8
Kernel + R“"tres
initram parameter
bramts (c;nalliv\e)

J

Quick overview of how the TPM event log works -

The hashes are recorded in the TPM event 600%700;;?1:%
log in different slots, called PCRs. Each PCR

stores the hash of a different set of system PCR @ TO
components (UAPI reference). Event 1 /elbedd3sn. ..
The current state of each PCR is dependent
. . . PCR @ T1
on its entire event log history Event 2] bmenboass.
241891dc3...

https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/

Measured boot: implementation notes -

For grub, you need to enable the tpm module to enable measurements (check the
docs for GRUB_PRELOAD_MODULES). Note that this doesn’t work with secure boot -
booting with secure boot disables all sideloading of modules, including the tpm module.

Important note: you also need to measure the LUKS master key or taint the TPM to
prevent LUKS spoofing attacks - more info here.

https://oddlama.org/blog/bypassing-disk-encryption-with-tpm2-unlock/

How do we determine what system state to trust? [T;’,tf.;:jg"'j

By predicting the PCR values of the next boot.

Most of the time, the next boot will match the current PCR values. However they
will change when you need to do kernel and firmware upgrades.

We can predict the PCR values of the next boot by merging the current TPM event
log with some predicted values (e.g. by rehashing the new on-disk kernel).

We can then reseal the disk unlock key against the new set of predicted PCR
values”®.

* when using authorized policies, you'd sign the new set of PCRs instead of resealing the key

How can | predict the PCR values?

TPM-based
uv\locking

§ ./pcr-predict.py

This is highly dependent on your INFO:root

using kernel image

/boot/vmlinuz-5.15.0-25-generic

environment. INFO:root:

using initramfs image

/boot/initrd.img-5.15.0-25-generic

INFO: t
e openSUSE/pcr-oracle: seems to be INFO:EE&

which key

aimed at Suse-based environments INFO:root:PCR@ : c548cb8d372b6. . .

INFO:root:
INFO:root:

e systemd-measure: aimed at

:TPM event log has 92 entries
:calculating digests against

will be sealed

PCR4 : 7c1be4d3500ea. ..
PCR8 : 967757a1f96de. ..

_ INFO:root:PCR9 : 14684a7fa97fe...
SyStemd bOOt SetUpS INFO:root:PCR15 : 0000000000000. ..

{

We built DataProphet/pcr-predict - a simple 00 coaacsTt. .

: clbe e

Python script that works for Ubuntu + Grub "8": "967757a1f...",

"9": "14684a7fa...",

setups. "15": "006000000. . ."
}

https://github.com/openSUSE/pcr-oracle/
https://www.freedesktop.org/software/systemd/man/latest/systemd-measure.html
https://github.com/DataProphet/pcr-predict

Unlocking the disk using the TPM [T;tj;:;*}

Unlocking the disk is made simple with |atchset/clevis.

Clevis abstracts key retrieval from various sources (e.g. TPM, key servers)

It then also integrates with various tools, like LUKS & dracut, to use these keys
to do useful things (like unlocking your disk).

We use clevis to retrieve keys from both the TPM and our key recovery service.

https://github.com/latchset/clevis

Help, | lost my keys. What now? [Recovery]

External
Eventually, something will go wrong and [service]
the TPM won't unseal your disk key. If owed to |
, . recover ey?
you're really unlucky, this happens to your X —
whole fleet. First try TPA Simple Flask

Backup: App
Enter |aichset/tang - a simple, stateless, Clevie |2 kev}
i T
key recovery service.

| |

https://github.com/latchset/tang

Reasons why Tang is great @ [Recovery J

e Keys can be encrypted without access to the server
The Tang server doesn’t need to be reachable to set up the recovery key (you
just need its advertisement, which can be distributed out-of-band).

e Incredibly simple to set up, secure and maintain.
Stateless & zero-config. Secret-sharing crypto means compromising just the
server doesn’t compromise client keys.

e Comms protocol consists of simple GETs and POSTs - TLS optional
The entire service only has two simple endpoints.

Recovery: what does it look like? [Recovery]

If your disk isn’t unlocking, it means your device will get stuck pre-boot, i.e. in
your initramfs environment - a slimmed down environment with the basic tools
needed to mount your disk and boot to it.

We use dracut - a modern initramfs used by Red Hat/Fedora, SUSE and a bunch
of other distros (and perhaps future Ubuntu versions?).

Customising your dracut images is easy - you just need a dracut module (a
simple bash script).

https://github.com/dracutdevs/dracut
https://discourse.ubuntu.com/t/please-try-out-dracut/48975

Recovery mode: staying in control [Recovery]

We need to retain control of a device even if it's in recovery mode. We need:

1. Working networking
This needs to work well before anything else will work

2. Working remote access
Depending on your setup, this may require a VPN

3. A way to control the device
SSH or some other orchestration method (e.g. Saltstack)

Dracut modules: basic overview [Recovery]

The initramfs consists of a small bootable filesystem.
Extending the initramfs usually consists of:

e Adding binaries and library files
Achieved with dracut helpers like inst_binary

e Adding config files
They’re simply copied over

e Setting up a systemd service
Very similar to normal services, just with different WantedBy targets

Networking in the initramfs [Recovery]

We use NetworkManager (along with its dracut module) + netplan to handle
networking in the initramfs.

The host config is copied over into the initramfs by netplan generate’ing the
configs into the initramfs root

install the netplan configs
inst_multiple -o -H /etc/netplan/*.yaml
render the network configs
netplan generate --root-dir "${initdir}"

enable the neednet option, which enables networking in the initramfs
echo "rd.neednet=1" > "${initdir}/etc/cmdline.d/10-neednet.conf"

Implementation notes: networking [Recovery]

Using systemd-networkd + rd.neednet made networking a hard requirement
for booting which is why we ended up using NetworkManager

The network-manager dracut module had a bug (dracut#2123) which might
break NetworkManager inside the initramfs on older versions of Debian/Ubuntu -
it requires a manual workaround (we just fixed it with symlinks)

https://github.com/dracutdevs/dracut/pull/2123

Retaining remote access

[Recoveﬂ/ j

We use wireguard + ssh to retain remote access to our devices.

install the wireguard binaries
inst_binary wg

inst_binary wg-quick

inst_binary sort # needed by wg-quick

install the config
NOTE the config file also includes the keys
inst_simple "S${CONFIG}"

install the wg-quick service template
inst_simple
/1ib/systemd/system/wg-quick@.service

enable the wg-quick service for the dp config
override_and_enable "wg-quick@S${INTERFACE}"

add the sshd binary
inst_binary /usr/sbin/sshd

add the current host keys
inst_multiple /etc/ssh/ssh_host_*

install the system ssh service
inst_simple
/1ib/systemd/system/ssh.service

enable the ssh service
override_and_enable ssh

copy in authorized keys
inst_simple /root/.ssh/authorized_keys

Monitoring and alerting ['”’sj

node-exporter + textfile-based metrics makes alerting easy

install the node exporter binary and service
inst_binary prometheus-node-exporter

inst_simple "/lib/systemd/system/prometheus-node-exporter.service"

add the static metrics file to indicate that the device is in recovery

mode

cat > "${initdir}${METRICS_DIR}/recovery.prom" <<EOF
edge_fde_recovery{device="{{ device_id }}"} 1.0

EOF

Bringing it all together

f

v

7

]

i) [~) (TR
TPM Metworking
TPM-based Monitoriv\g in initramfs
uv\locking Onboarohng and
wmechanism to and ale.rtiv\g /I\
allow fully recovery mechanisms SSH +
autonomous mechanisms to make it [WIreguarJ j
reboots scale
_ 4 _ 4 @ J

!

Node-
exporter

(

A A 3
] 1 \ [
Bootloader with L l .
TPM integt‘ation &CR Pred'ct'o" E'ev.s + 'Tavﬂ

Q@ oo
&/

EUROPE

Thank you

If you see my keys, please let me know

(CN et |

